Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Chem ; 65(4): 2747-2784, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-2275124

ABSTRACT

Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Furin/antagonists & inhibitors , Peptides/pharmacology , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , COVID-19/metabolism , Furin/metabolism , Humans , Peptides/chemistry , SARS-CoV-2/metabolism , Small Molecule Libraries/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL